ATP synthase is responsible for maintaining mitochondrial membrane potential in bloodstream form Trypanosoma brucei.
نویسندگان
چکیده
The mitochondrion of Trypanosoma brucei bloodstream form maintains a membrane potential, although it lacks cytochromes and several Krebs cycle enzymes. At this stage, the ATP synthase is present at reduced, although significant, levels. To test whether the ATP synthase at this stage is important for maintaining the mitochondrial membrane potential, we used RNA interference (RNAi) to knock down the levels of the ATP synthase by targeting the F1-ATPase alpha and beta subunits. RNAi-induced cells grew significantly slower than uninduced cells but were not morphologically altered. RNAi of the beta subunit decreased the mRNA and protein levels for the beta subunit, as well as the mRNA and protein levels of the alpha subunit. Similarly, RNAi of alpha subunit decreased the alpha subunit transcript and protein levels, as well as the beta-subunit transcript and protein levels. In contrast, alpha and beta RNAi knockdown resulted in a 60% increase in the F0 complex subunit 9 protein levels without a significant change in the steady-state transcript levels of this subunit. The F0-32-kDa subunit protein expression, however, remained stable throughout induction of RNAi for alpha or beta subunits. Oligomycin-sensitive ATP hydrolytic and synthetic activities were decreased by 43 and 44%, respectively. Significantly, the mitochondrial membrane potential of alpha and beta RNAi cells was decreased compared to wild-type cells, as detected by MitoTracker Red CMXRos fluorescence microscopy and flow cytometry. These results support the role of the ATP synthase in the maintenance of the mitochondrial membrane potential in bloodstream form T. brucei.
منابع مشابه
The F1-ATP synthase complex in bloodstream stage trypanosomes has an unusual and essential function.
Survival of bloodstream form Trypanosoma brucei, the agent of African sleeping sickness, normally requires mitochondrial gene expression, despite the absence of oxidative phosphorylation in this stage of the parasite's life cycle. Here we report that silencing expression of the alpha subunit of the mitochondrial F(1)-ATP synthase complex is lethal for bloodstream stage T. brucei as well as for ...
متن کاملNon-cytochrome mediated mitochondrial ATP production in bloodstream form Trypanosoma brucei brucei.
The life cycle of Trypanosoma brucei brucei involves a series of differentiation steps characterized by marked changes in mitochondrial development and function. The bloodstream forms of this parasite completely lack cytochromes and have not been considered to have any Krebs cycle function. It has been suggested that glycolysis is the sole source of ATP in all bloodstream forms. However, earlie...
متن کاملTrypanosoma brucei TbIF1 inhibits the essential F1-ATPase in the infectious form of the parasite
The mitochondrial (mt) FoF1-ATP synthase of the digenetic parasite, Trypanosoma brucei, generates ATP during the insect procyclic form (PF), but becomes a perpetual consumer of ATP in the mammalian bloodstream form (BF), which lacks a canonical respiratory chain. This unconventional dependence on FoF1-ATPase is required to maintain the essential mt membrane potential (Δψm). Normally, ATP hydrol...
متن کاملAn Atypical Mitochondrial Carrier That Mediates Drug Action in Trypanosoma brucei
Elucidating the mechanism of action of trypanocidal compounds is an important step in the development of more efficient drugs against Trypanosoma brucei. In a screening approach using an RNAi library in T. brucei bloodstream forms, we identified a member of the mitochondrial carrier family, TbMCP14, as a prime candidate mediating the action of a group of anti-parasitic choline analogs. Depletio...
متن کاملSingle point mutations in ATP synthase compensate for mitochondrial genome loss in trypanosomes.
Viability of the tsetse fly-transmitted African trypanosome Trypanosoma brucei depends on maintenance and expression of its kinetoplast (kDNA), the mitochondrial genome of this parasite and a putative target for veterinary and human antitrypanosomatid drugs. However, the closely related animal pathogens T. evansi and T. equiperdum are transmitted independently of tsetse flies and survive withou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eukaryotic cell
دوره 5 1 شماره
صفحات -
تاریخ انتشار 2006